¿Por qué el universo no se convirtió en un agujero negro tras el Big Bang?
El universo, tal y como lo conocemos, está repleto de cosas. Nuestra galaxia es un tremendo remolino de estrellas, gas, polvo estelar y un gran halo de materia oscura, conteniendo entre 200 y 400 mil millones de estrellas y más de un billón de veces la masa de nuestro Sistema Solar. Y nuestra galaxia es solo una de billones de forma y alcanze similar, repartidas por todo el universo.El mundo no le debe nada. Estaba aquí antes - Mark Twain
Ute Kraus, Physics education group Kraus, Universität Hildesheim; background: Axel Mellinger
NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team. |
Sloan Digital Sky Survey Team, NASA, NSF, DOE. |
Es por eso, que cuando piensas en los primeros momentos del universo, cuanto toda esta materia y energía estaba condensada en una zona ridículamente pequeña, incluso menor que nuestro Sistema Solar, te haces esta pregunta.
Cuando el universo tan solo tenía un picosegundo de edad, tras el Big Bang, contenido en un volumen menor que una esfera colocada en la posición del Sol con un radio de una unidad astronómica (UA).
La duda viene cuando existen agujeros negros con mucha menos masa que el universo pero que son mucho más grandes.
NASA and the Hubble Heritage Team (STScI/AURA), J. A. Biretta, W. B. Sparks, F. D. Macchetto, E. S. Perlman. |
Esta es la galaxia elíptica gigante Messier 87, la galaxia más grande a 50 millones de años-luz de nosotros, a 0,1% del radio del universo observable. Tiene un agujero negro supermasivo en el centro con una masa de 3500 millones de soles, lo que significa que tiene un radio de Schwarzchild - el radio desde el que la luz no puede escapar - de 10.000 millones de kilómetros, casi 70 unidades astronómicas.
Bien, esa es mucha masa para un volumen tan pequeño, entonces, ¿por qué poner una masa 1024 veces más grande en un volumen más pequeño no hace un agujero negro? (De hecho está claro que no lo hizo, sino que creó el universo).
Wikimedia Commons subida por Llull; imagen de dominio público bajo CC-BY-SA-2.0 |
En realidad, casi lo hizo. Si lo recuerdas, el universo se expande conforme pasa el tiempo, y esta se va enlenteciendo más y más en el futuro. En ese pasado distante, en los primeros picosegundos del universo, la expansión era muchísimo más rápida que ahora. ¿Cuánto?
En la actualidad el universo se expande a unos 67 km/s/Mpc, que significa que por cada Megaparsec (Mpc, o unos 3,26 millones de años-luz) de distancie que nos separe de otro objeto, nos distanciaremos a unos 67 km/s. Cuando el universo tenía tan solo un picosegundo, alcanzaba los 1046 km/s/Mpc. Para ponerlo en perspectiva, en el presente, un índice de expansión tan grande causaría que todos los átomos de la Tierra se separaran entre sí tan rápido que en tan solo un segundo los átomos se encontrarían a más de un año-luz de distancia del átomo más próximo.
James Schombert of U. of Oregon, via http://abyss.uoregon.edu/~js/. |
Esta ecuación tiene dos partes principales: por un lado está H, o el índice de expansión del universo de Hubble, y al otro lado, entre las variables, está ρ, que es la densidad de la energía del universo. Si H y ρ están perfecta, o casi perfectamente equilibradas, el universo podrá vivir por mucho tiempo. Pero un pequeño desequilibrio puede llevar a dos destinos trágicos.
Russell Lavery of Imperial College, via http://spaces.imperial.edu/russell.lavery/. |
Si por entonces el índice de expansión hubiera sido un poco más pequeño en relación a la cantidad de materia y energía que había en él, habríamos sufrido un colapso e implosión casi inmediata. Este agujero negro se habría producido catastróficamente rápido. Si el índice de expansión hubiera sido un poco mayor, ningún átomo se habría unido en el universo. De hecho, todo se habría expandido tan rápido que cada partícula subatómica habría existido en lo que hubiera percibido como su propio universo, sin nada con lo que interactuar.
David P. Bennett of Notre Dame, via http://bustard.phys.nd.edu/. |
Siguiendo, habría hecho falta una ligera diferencia de menos de una parte en 1024 para mantener el universo vivo durante unos 10.000 millones de años. Esto significa que incluso una diferencia de incluso 0.00000001% del valor crítico del índice de expansión habría sido suficiente para destruir el universo en menos de un segundo si el índice de expansión fuera demasiado pequeño, o de evitar que se formara ni un solo átomo de Helio, si fuera demasiado grande.
Pero no tenemos ninguna de esas opciones; tenemos un universo que parece estar casi perfectamente en el equilibrio crítico entre la expansión y la densidad de radiación y energía, la única diferencia es una minúscula constante cosmológica que posee nuestro universo.
Fuente:Start with a bang!
Aqui hay un error en la cantidad de estrellas de nuestra Galaxia:
Nuestra galaxia es un tremendo remolino de estrellas, gas, polvo estelar y un gran halo de materia oscura, conteniendo entre 200 y 400 mil estrellas
Saludos
Gracias. Entonces se me pasó colocar el "millones" tras el mil.